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The percolation threshold of hard prolate ellipsoids of revolution dispersed in a continuum is obtained as a
function of the aspect ratio. First random close packing of ellipsoids is produced by a dropping-and-shaking
protocol. Two ellipsoids are regarded as connected when they come sufficiently close. Then a given fraction of
ellipsoids selected randomly is removed and percolation of remaining ellipsoids is investigated as the fraction
of remaining ellipsoids is varied. It is shown that the critical volume fraction of the colored ellipsoids is a
decreasing function of the aspect ratio and that the aspect ratio dependence is well fitted by the inverse of the
interaction range determined by the surface area and the radius of gyration of the ellipsoid surface.
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I. INTRODUCTION

Percolation in the continuum has been studied for a long
time because of its importance in practical applications
�1–3�. In most studies, discrete sites are distributed randomly
in a continuous space and a fixed interaction range is as-
sumed. Two sites which are within their interaction regions
are assumed to be connected, and clusters are constructed by
mutually connected sites. The main interest is the condition
that there exist an infinitely extending, or percolating, chan-
nel which plays an important role in determining the trans-
port properties of the system. The guiding principle for the
continuum percolation is the critical volume �area in two
dimensions� fraction which is thought to approximately be a
dimensional invariant. Namely, when the volume fraction oc-
cupied by the objects exceeds a critical value, then the ob-
jects form a percolating cluster.

Analyzing the standard percolation process on lattices,
Scher and Zallen suggested for spherical objects that the
critical volume fraction is �15.4% in three dimensions and
the critical area fraction is �44% in two dimensions �4�. It
is, however, now known that the critical volume fraction
depends on the shape of objects. In fact, it has been shown
that the critical volume fraction depends on the polydisper-
sity for spherical objects �5� and on the aspect ratio for non-
spherical objects �6�. Similar universal behavior was pro-
posed by Pike and Seager �7� for interpenetrating circles and
spheres. They found that the critical average number of
bonds per site, or the critical bond number, is approximately
a dimensional invariant. Balberg et al. �8� extended this idea
and concluded that the total excluded volume and area are
invariants for soft-core objects of a given shape. There have
been several papers which treat the percolation of overlap-
ping ellipsoidal objects, and a suggestion was made that the
critical density can be correlated with the excluded volume
of the objects, though the correlation is not perfect �9,10�.

In modern materials sciences, dispersing foreign objects
in a host material is one of the most commonly used methods

to control its functionality. For example, the percolation pro-
cess of carbon nanotubes dispersed in polymers has been
investigated and it is found that the percolation threshold
strongly depends on the aspect ratio, spatial distribution, ori-
entation, etc. �11�. In practical applications of percolation to
materials, we must take account of the geometrical constraint
due to the shape of the percolating objects which excludes
other objects from a certain vicinity of a given object, and
therefore we have to investigate the percolation of hard-core
objects. This situation is in clear contrast to applications of
percolation to social phenomena such as spread of epidemics
and rumor �12�, where it is natural to assume that the inter-
action range can overlap, and the Swiss-cheese-type model
�13�.

In this paper, we study geometrical percolation of the sus-
pension of hard-core ellipsoids in a continuum by Monte
Carlo simulation. We consider prolate ellipsoids of revolu-
tion and obtain the critical volume fraction as a function of
the aspect ratio. In Sec. II, we explain the model system and
method of computer simulation. In order to produce suspen-
sion of ellipsoids in the continuum, we exploit the packing
and percolation procedure �5�. We present the results of
simulation in Sec. III, where the critical volume fraction is
determined by the finite-size scaling method. In Sec. IV, we
analyze theoretically the critical volume fraction on the basis
of various properties of the ellipsoid and show that the criti-
cal volume fraction is best correlated with the interaction
range determined by the surface area and the radius of gyra-
tion of the surface at least for the aspect ratio studied here.
Section V is devoted to a discussion.

II. MODEL AND PACKING-AND-PERCOLATION
PROCEDURE

We are interested in a system where hard-core objects are
dispersed in a continuum with a given volume fraction. We
consider two objects are connected when they touch each
other. �In practical calculations, we assume two objects are
connected when they come close within a certain distance.�
The questions are if there exists a channel of mutually con-
nected objects which spans the entire system—i.e., a perco-
lation channel—and what the critical volume fraction of the
objects is above which there exists always an infinitely ex-
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tending channel and how the critical volume fraction de-
pends on the shape of objects.

In this paper, we investigate the percolation of suspended
hard-core ellipsoids of revolution. It is a very time-
consuming process to put the objects one by one up to a
certain volume fraction because no overlap of two objects is
allowed. Furthermore, if one tries to place one object without
overlapping other objects, some correlation in the distribu-
tion might be introduced unintentionally. In order to avoid
this difficulty and to mimic dispersing the objects randomly
in a continuum with the same density, we exploit the packing
and percolation procedure �5�. In this procedure, we first pro-
duce a dense packing of the objects in the continuum, where
there is a percolating channel of the objects. Then, we select
an object randomly from the packed structure and remove it
to reduce the volume fraction of the objects. This process is
repeated until the volume fraction becomes far below the
critical value at which the percolating channel ceases to ex-
ist. We emphasize that this procedure is exactly the same as
the site percolation process on lattices, where circles or
spheres with radii of half of the lattice constant are inscribed
about the lattice sites and a connection between randomly
selected objects is observed. In the present study, we focus
on prolate ellipsoids of revolution

x2

a2 +
y2

b2 +
z2

b2 = 1, �1�

where the aspect ratio �� a
b �1 is a parameter and ab2

��0
3 is fixed to keep the volume of the ellipsoid constant.

Here, �0 is taken as the unit of length.

III. RESULTS

We prepared an L�L�4L /3 cubic box with the long
edge in the vertical direction and first produced random
dense packing of ellipsoids of a given aspect ratio using
MACRO PAC of Intelligensys Ltd �North Yorkshire, U.K.�,
where we used the dropping and shaking processes to en-
hance the packing fraction. This software uses an algorithm
identical to one introduced by Soppe �14�. An ellipsoid in a
random direction is introduced far above the simulation cell
and is dropped to the bottom until its center reaches the
bottom of the cell or it touches other ellipsoids settled earlier.
Then, using the Monte Carlo method, its position is lowered
with other orientations until it is settled. Note that the struc-
ture produced by this procedure is not the maximally random
jammed structure �15�. Figure 1�a� shows an example of the
random structure we obtained for �=5. We imposed periodic
boundary conditions on the horizontal directions and the soft
boundary at the bottom where an ellipsoid can settle at its
position if the center of gravity of the ellipsoid is within the
simulation box. The top of the simulation box was assumed
to be free boundary. Setting the observation box to L�L
�L, ignoring L /15 from the bottom and 4L /15 from the top,
we obtained the packing fraction � as a function of the as-
pect ratio which is shown in Fig. 2. When the aspect ratio �
is increased from unity, the packing fraction increases ini-
tially and then decreases as � is increased further. This be-

havior agrees with observations in the literature �16,17�.
In order to investigate the percolation process, we first

connect two ellipsoids whose distance is sufficiently small.
In order to compensate for the fact that the structure is not
the maximally random jammed one, we assumed that the

(b)

(a)

FIG. 1. �Color online� �a� Random dense packing of ellipsoids
generated by MACRO PAC for �=5. �b� Ellipsoids randomly selected
are removed and the connectivity of the remaining ellipsoids is
investigated. The fraction of the remaining ellipsoids is p=0.2. The
box shows the simulation cell L�L�

4L
3 . The observation cell is

L�L�L, where L
15 from the bottom and 4L

15 from the top are
ignored.
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interaction range is a similar ellipsoid whose three axes are
5% longer than the core ellipsoid and that two ellipsoids
whose interaction ranges overlap are connected. This relaxed
condition may make the critical percolation concentration
smaller, but the effect is less than a few percent.

Next, we selected randomly ellipsoids of a given fraction
1− p and removed them. Figure 1�b� shows a typical configu-
ration of the ellipsoids remaining in the cell.

The percolation was judged by the existence of a perco-
lating channel which connects the bottom and top of the
observation box. We made 10 000 observations for L=10,
5000 observations for L=15, and 2000 observations for L
=25. For systems with a given volume fraction, we obtained
the fraction of tries �percolation probability� which kept a
percolation channel. Figures 3�a� and 3�b� show the packing
fraction dependence of the percolation probability R�f�. Here
the packing fraction f is the volume fraction occupied by the
remaining ellipsoids.

We analyzed the percolation probability shown in Fig. 3
by the finite-size scaling method, assuming

R�f� = R�L1/��f − fC�� . �2�

Here, we assumed �=0.9 as the ordinary percolation process
in three dimensions. We estimated the critical value appro-
priately from the crossings of R�f� for different L and replot-
ted the percolation probability in a scaled form, which is
shown in Fig. 4. Excellent collapsing of the data supports the
validity of the values chosen for fC and �.

Figure 5 shows the aspect ratio dependence of the critical
volume fraction. It is interesting to note that since the critical
volume fraction is a decreasing function of the aspect ratio,
the system can be transformed from the nonpercolated to
percolated state by increasing the aspect ratio of the ellip-
soids even if the volume fraction occupied by the ellipsoids
is kept constant.

IV. ANALYSIS

For the percolation process of overlapping ellipsoids,
there have been significant efforts to correlate the critical
volume fraction to basic properties of the ellipsoids �9,10�.

Here, we analyze the correlation between the critical volume
fraction and the basic properties of ellipsoids in a slightly
different manner. We may assume that a given ellipsoid will
have a percolating path only when there is a sufficiently large
number of other ellipsoids in its vicinity. We first define the
vicinity by the interaction range Vint��� around a given ellip-
soid. We expect that the number of ellipsoids in this interac-
tion range must be larger than a critical value when a perco-
lating channel exists. Namely, we can postulate that

Vint���fC��� = VC. �3�

When the correlation between the critical volume fraction
and the interaction range is strong, the critical value VC will
not depend on �. Namely, we can test the correlation by

observing if
fC�1�

fC��� and
Vint���

Vint�1� coincide.

We can consider several definitions for the interaction
range. Here, we test three possibilities: One is to identify it
as the exclusion volume �8�

Vint��� = Vex��� . �4�

It may be natural to consider that the interaction area is de-
termined by the surface area multiplied by an effective linear
dimension of the ellipsoid. Thus, we introduce the second
model, which identifies Vint��� as the area occupied by an
ellipsoid itself and its vicinity determined by the surface area
A��� and the average radius of gyration of the surface rg���:
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FIG. 2. Dependence of the packing fraction on the aspect

ratio.
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FIG. 3. �Color online� Percolation probability as a function of
the packing fraction for L=10, 15, and 25. �a� �=5, �b� �=10.
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Vint��� = V0 + C1rg���A��� , �5�

where C1 is an adjustable parameter. Here, rg��� is defined
by

�rg����2 =

�
surface

�x2 + y2 + z2�d�

�
surface

d�

, �6�

where the origin of the coordinate is set to the center of the
ellipsoid and d� is the surface element at �x ,y ,z� on the
surface. This radius is a more relevant measure of the exten-
sion of an ellipsoid than the standard radius of gyration of an
ellipsoid, because the contents in ellipsoids do not affect the
connectivity determined by touching two ellipsoids.

The third model is to regard it as an expanded ellipsoid by
a certain fraction of rg��� in all axes:

Vint��� =
4	

3
�a + C2rg�����b + C2rg����2, �7�

where C2 is an adjustable parameter.
The explicit expressions for Vex���, A���, and rg��� are

summarized in the Appendix. Figure 6 shows a comparison

of
fC�1�

fC��� with these choices for the interaction range.

It is clearly seen in Fig. 6 that the expression �5� with
C1=0.5 coincides perfectly well with the inverse of the criti-
cal volume fraction.

V. DISCUSSION

We have obtained the critical percolation volume fraction
fC of hard-core prolate-ellipsoids suspended in the con-
tinuum as a function of the aspect ratio �. As � is increased
from �=1, fC��� decreases even though the packing fraction
���� increases initially. The inset of Fig. 5 shows the frac-
tion of ellipsoids, pC, at the percolation threshold as a func-
tion of the aspect ratio. Needless to say, the critical volume
fraction is given by the product of pC and �, i.e., fC���
= pC�������. The strong dependence of pC near �=1 com-
pensates the initial rise in the packing fraction seen in Fig. 1
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FIG. 4. �Color online� Percolation probability in the scaled form
�2�. �a� �=5, �b� �=10.
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FIG. 5. The critical volume fraction fC��� is plotted against the
aspect ratio �. The inset shows the critical concentration pC��� as a
function of �.
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FIG. 6. Dependence of
fC�1�

fC��� and
Vint���

Vint�1� on the aspect ratio. The

solid circles show the inverse of the critical volume fraction. The
curves represent three choices for the interaction range: The dotted
curve is the excluded volume �4�; the solid and dashed curves show
Eq. �5� with C1=0.5 and Eq. �7� with C2=0.25, respectively.
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so that the critical volume fraction becomes a monotone de-
creasing function of the aspect ratio.

In view of the comparison in Fig. 6, we can conclude that
the expression �5� is a good approximation for the interaction
range and that Vint���fC��� is approximately a dimensional
invariant at least for the ellipsoids studied here. It should be
noted that the critical volume fraction also correlates rather
well with the excluded volume at least for the aspect ratio
investigated.

It is a future problem to test if these relations hold for
ellipsoids of large aspect ratio and for oblate ellipsoids.

In this paper, we investigated the correlation of the critical
volume fraction only to the excluded volume and the average
radius of gyration of the surface, because these properties
give good correlation. In Ref. �9�, various functionals of el-
lipsoids such as the average curvature and the radius of gy-
ration have been investigated in connection to the critical
volume fraction for the percolation of overlapping ellipsoids.
We did not show the correlation of those functionals to our
results because the correlation is poor except for the radius of
gyration defined for the entire body of the ellipsoid and the
physical meaning for the correlation with the radius of gyra-
tion of the body is not clear.

In order to see if the critical bond number is a dimen-
sional invariant �7�, we also obtained the bond number per
ellipsoid BC at the percolation threshold. We found that BC
depends rather strongly on � and therefore it cannot be a
dimensional invariant.

In conclusion, we would like to comment on the relaxed
condition for connection that we employed. In real applica-
tions, it is known in many cases that the observed volume
fraction of an object differs from the connection range due to
a shell of absorbed solvent. If this is the case, the packing
and connection are determined by the outer shell including
the absorbed solvent though the volume fraction is measured
by the core. This situation is somewhat similar to the pips
inside a pomegranate studied by J. Kepler in the 16th cen-

tury. Furthermore, the effect of the relaxed condition for the
connection can be estimated to be about 5% and the main
results presented here should not differ much even if one
prepares a really jammed structure and imposes a stricter
condition for touching.
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APPENDIX: SOME PROPERTIES OF A PROLATE
ELLIPSOID OF REVOLUTION

Here we give a partial list of basic properties of a prolate
ellipsoid of revolution. See Ref. �9� for a fuller discussion. In
the following 
=�1− �1/�2� is the eccentricity.

�i� The excluded volume �18�

Vex��� = V0	2 +
3�

2

1 +

1 − 
2

2

ln

1 + 


1 − 

�
�1 − 
2

+
sin−1�
�



�� . �A1�

�ii� The surface area

A��� = 2	ab
�1 − 
2 +
sin−1 




� . �A2�

�iii� The radius of gyration of the surface,

rg���2 =
	a3b

2
A���
 4

�2 �sin−1 
 + 
�1 − 
2� + sin−1 


− 
�1 − 
2�1 − 2
2�� . �A3�

Note that rg��� is different from the radius of gyration of the
body and that it is a more appropriate measure of the exten-
sion of the ellipsoid in the present problem.
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